Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 49(3): 561-572, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37673966

RESUMO

Prototypic antidepressants, such as tricyclic/tetracyclic antidepressants (TCAs), have multiple pharmacological properties and have been considered to be more effective than newer antidepressants, such as selective serotonin reuptake inhibitors, in treating severe depression. However, the clinical contribution of non-monoaminergic effects of TCAs remains elusive. In this study, we discovered that amitriptyline, a typical TCA, directly binds to the lysophosphatidic acid receptor 1 (LPAR1), a G protein-coupled receptor, and activates downstream G protein signaling, while exerting a little effect on ß-arrestin recruitment. This suggests that amitriptyline acts as a G protein-biased agonist of LPAR1. This biased agonism was specific to TCAs and was not observed with other antidepressants. LPAR1 was found to be involved in the behavioral effects of amitriptyline. Notably, long-term infusion of mouse hippocampus with the potent G protein-biased LPAR agonist OMPT, but not the non-biased agonist LPA, induced antidepressant-like behavior, indicating that G protein-biased agonism might be necessary for the antidepressant-like effects. Furthermore, RNA-seq analysis revealed that LPA and OMPT have opposite patterns of gene expression changes in the hippocampus. Pathway analysis indicated that long-term treatment with OMPT activated LPAR1 downstream signaling (Rho and MAPK), whereas LPA suppressed LPAR1 signaling. Our findings provide insights into the mechanisms underlying the non-monoaminergic antidepressant effects of TCAs and identify the G protein-biased agonism of LPAR1 as a promising target for the development of novel antidepressants.


Assuntos
Amitriptilina , Depressão , Camundongos , Animais , Amitriptilina/farmacologia , Depressão/tratamento farmacológico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos Tricíclicos , Proteínas de Ligação ao GTP
2.
Molecules ; 28(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37836768

RESUMO

In medicinal chemistry, the copper-catalyzed click reaction is used to prepare ligand candidates. This reaction is so clean that the bioactivities of the products can be determined without purification. Despite the advantages of this in situ screening protocol, the applicability of this method for transmembrane proteins has not been validated due to the incompatibility with copper catalysts. To address this point, we performed ligand screening for the µ, δ, and κ opioid receptors using this protocol. As we had previously reported the 7-azanorbornane skeleton as a privileged scaffold for the G protein-coupled receptors, we performed the click reactions between various 7-substituted 2-ethynyl-7-azanorbornanes and azides. Screening assays were performed without purification using the CellKeyTM system, and the putative hit compounds were re-synthesized and re-evaluated. Although the "hit" compounds for the µ and the δ receptors were totally inactive after purifications, three of the four "hits" for the κ receptor were true agonists for this receptor and also showed activities for the δ receptor. Although false positive/negative results exist as in other screening projects for soluble proteins, this in situ method is effective in identifying novel ligands for transmembrane proteins.


Assuntos
Cobre , Receptores Opioides kappa , Receptores Opioides kappa/metabolismo , Ligantes , Proteínas de Membrana , Receptores Opioides mu/metabolismo , Analgésicos Opioides/química
3.
Brain Res ; 1821: 148567, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37689333

RESUMO

Beta-hydroxybutyrate (BHB), an endogenous NLRP3 inflammasome inhibitor, has been shown to be associated with the pathophysiology of depression in rodents. However its active mechanism has not been revealed. Herein, we probed both the pathways and brain regions involved in BHB's antidepressant-like effects in a learned helplessness (LH) rat model of depression. A single bilateral infusion of BHB into the cerebral ventricles induced the antidepressant-like effects on the LH rats. The antidepressant-like effects of BHB were blocked by the TrkB inhibitor ANA-12 and the AMPA receptor antagonist NBQX, indicating that the antidepressant-like effects of BHB involve BDNF-TrkB signaling and AMPA receptor activation. Further, infusions of BHB into the prelimbic and infralimbic portions of medial prefrontal cortex, the dentate gyrus of hippocampus, and the basolateral region of amygdala produced the antidepressant-like effects on LH rats. However, infusions of BHB into the central region of amygdala, the CA3 region of hippocampus, and the shell and core regions of nucleus accumbens had no effect. Finally, a single bilateral infusion of BHB into the cerebral ventricles of naive rats strengthened learning ability on repeated active avoidance test where saline-infused animals failed to increase avoidance responses.


Assuntos
Desamparo Aprendido , Inflamassomos , Ratos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido 3-Hidroxibutírico , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptores de AMPA , Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Receptor trkB/metabolismo
4.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37373107

RESUMO

Rubiscolins are naturally occurring opioid peptides derived from the enzymatic digestion of the ribulose bisphosphate carboxylase/oxygenase protein in spinach leaves. They are classified into two subtypes based on amino acid sequence, namely rubiscolin-5 and rubiscolin-6. In vitro studies have determined rubiscolins as G protein-biased delta-opioid receptor agonists, and in vivo studies have demonstrated that they exert several beneficial effects via the central nervous system. The most unique and attractive advantage of rubiscolin-6 over other oligopeptides is its oral availability. Therefore, it can be considered a promising candidate for the development of a novel and safe drug. In this review, we show the therapeutic potential of rubiscolin-6, mainly focusing on its effects when orally administered based on available evidence. Additionally, we present a hypothesis for the pharmacokinetics of rubiscolin-6, focusing on its absorption in the intestinal tract and ability to cross the blood-brain barrier.


Assuntos
Receptores Opioides delta , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Receptores Opioides delta/metabolismo , Oligopeptídeos , Peptídeos Opioides
5.
Int J Mol Sci ; 24(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37176075

RESUMO

Remifentanil (REM) and fentanyl (FEN) are commonly used analgesics that act by activating a µ-opioid receptor (MOR). Although optimal concentrations of REM can be easily maintained during surgery, it is sometimes switched to FEN for optimal pain regulation. However, standards for this switching protocol remain unclear. Opioid anesthetic efficacy is decided in part by MOR desensitization; thus, in this study, we investigated the desensitization profiles of REM and FEN to MOR. The efficacy and potency during the 1st administration of REM or FEN in activating the MOR were almost equal. Similarly, in ß arrestin recruitment, which determines desensitization processes, they showed no significant differences. In contrast, the 2nd administration of FEN resulted in a stronger MOR desensitization potency than that of REM, whereas REM showed a higher internalization potency than FEN. These results suggest that different ß arrestin-mediated signaling caused by FEN or REM led to their distinct desensitization and internalization processes. Our three-dimensional analysis, with in silico binding of REM and FEN to MOR models, highlighted that REM and FEN bound to similar but distinct sites of MOR and led to distinct ß arrestin-mediated profiles, suggesting that distinct binding profiles to MOR may alter ß arrestin activity, which accounts for MOR desensitization and internalization.


Assuntos
Fentanila , Receptores Opioides , Receptores Opioides/metabolismo , Fentanila/farmacologia , Remifentanil/farmacologia , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacologia , beta-Arrestinas/metabolismo , Morfina
6.
Peptides ; 159: 170901, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347314

RESUMO

Positive allosteric modulators (PAMs) of G protein-coupled receptors (GPCRs) have drawn attention as novel drug candidates. PAMs can enhance the activities of endogenous agonists which are not only secreted at appropriate times and in parts of the body, but also are immediately metabolized. Therefore, they are expected to show fewer side effects than exogeneous orthosteric ligands. Recently, we have reported that oxytocin (OT) functioned as a PAM of the µ opioid receptor (MOR) which was one of the most potent targets for analgesics. OT is thus thought to be a useful compound for the development of novel analgesics. In this study, several OT analogs were synthesized and evaluated with an intact cell-based assay to investigate the crucial structures of OT for exerting the PAM activity. The assay results indicated that the cyclic structure formed by an intramolecular disulfide bond and the three C-terminal residues containing a small Gly residue of OT were essential for their function as a MOR-PAM. Intriguingly, two analogs having an amide or an ethylene tether instead of the intramolecular disulfide bridge did not have any PAM effects. The results suggested that the disulfide linkage of OT would be a key structure for exerting the PAM activity at the MOR.


Assuntos
Ocitocina , Receptores Opioides , Regulação Alostérica , Receptores Opioides mu/metabolismo , Relação Estrutura-Atividade , Analgésicos
7.
Molecules ; 27(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36296658

RESUMO

Opioid receptors (ORs) are classified into three types (µ, δ, and κ), and opioid analgesics are mainly mediated by µOR activation; however, their use is sometimes restricted by unfavorable effects. The selective κOR agonist nalfurafine was initially developed as an analgesic, but its indication was changed because of the narrow safety margin. The activation of ORs mainly induces two intracellular signaling pathways: a G-protein-mediated pathway and a ß-arrestin-mediated pathway. Recently, the expectations for κOR analgesics that selectively activate these pathways have increased; however, the structural properties required for the selectivity of nalfurafine are still unknown. Therefore, we evaluated the partial structures of nalfurafine that are necessary for the selectivity of these two pathways. We assayed the properties of nalfurafine and six nalfurafine analogs (SYKs) using cells stably expressing κORs. The SYKs activated κORs in a concentration-dependent manner with higher EC50 values than nalfurafine. Upon bias factor assessment, only SYK-309 (possessing the 3S-hydroxy group) showed higher selectivity of G-protein-mediated signaling activities than nalfurafine, suggesting the direction of the 3S-hydroxy group may affect the ß-arrestin-mediated pathway. In conclusion, nalfurafine analogs having a 3S-hydroxy group, such as SYK-309, could be considered G-protein-biased κOR agonists.


Assuntos
Analgésicos Opioides , Receptores Opioides kappa , Analgésicos , Analgésicos Opioides/farmacologia , beta-Arrestinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptores Opioides kappa/agonistas , Receptores Opioides mu/metabolismo
8.
Br J Cancer ; 127(8): 1565-1574, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35945243

RESUMO

BACKGROUND: It has been considered that activation of peripheral µ-opioid receptors (MORs) induces side effects of opioids. In this study, we investigated the possible improvement of the immune system in tumour-bearing mice by systemic administration of the peripheral MOR antagonist naldemedine. METHODS: The inhibitory effect of naldemedine on MOR-mediated signalling was tested by cAMP inhibition and ß-arrestin recruitment assays using cultured cells. We assessed possible changes in tumour progression and the number of splenic lymphocytes in tumour-bearing mice under the repeated oral administration of naldemedine. RESULTS: Treatment with naldemedine produced a dose-dependent inhibition of both the decrease in the cAMP level and the increase in ß-arrestin recruitment induced by the MOR agonists. Repeated treatment with naldemedine at a dose that reversed the morphine-induced inhibition of gastrointestinal transport, but not antinociception, significantly decreased tumour volume and prolonged survival in tumour-transplanted mice. Naldemedine administration significantly decreased the increased expression of immune checkpoint-related genes and recovered the decreased level of toll-like receptor 4 in splenic lymphocytes in tumour-bearing mice. CONCLUSIONS: The blockade of peripheral MOR may induce an anti-tumour effect through the recovery of T-cell exhaustion and promotion of the tumour-killing system.


Assuntos
Neoplasias , Receptores Opioides mu , Analgésicos Opioides/efeitos adversos , Animais , Sistema Imunitário/metabolismo , Camundongos , Derivados da Morfina , Naltrexona/análogos & derivados , Neoplasias/induzido quimicamente , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Receptor 4 Toll-Like/metabolismo , beta-Arrestinas/metabolismo
9.
Anesth Analg ; 134(5): 1082-1093, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35427270

RESUMO

BACKGROUND: Transdermal fentanyl is widely used in the treatment of severe pain because of convenience, safety, and stable blood concentrations. Nevertheless, patients often develop tolerance to fentanyl, necessitating the use of other opioids; transdermal buprenorphine patch is widely used as an analgesic agent, though available formulation does not provide comparable analgesic effect as transdermal fentanyl patch. Opioids bind to the opioid receptor (OR) to activate both G protein-mediated and ß-arrestin-mediated pathways. We synthesized morphine-related compounds with high transdermal absorbability (N1 and N2) and evaluated their OR activities pharmacologically in comparison with fentanyl and morphine. METHODS: In cells stably expressing µ-opioid receptor (MOR), δ-opioid receptor (DOR), and κ-opioid receptor (KOR), G protein-mediated pathways were assessed using the CellKey and an intracellular cyclic adenosine monophosphate (cAMP) assay, while ß-arrestin-mediated pathways were analyzed with ß-arrestin recruitment and receptor internalization assays. Furthermore, analgesic effects were evaluated using a tail-flick test in mice, and the analgesic effect on fentanyl-tolerant mice was evaluated. RESULTS: In the CellKey and cAMP assays, both N1 and N2 showed the highest affinity for MOR and acted as full agonists as well as partial agonists for DOR and KOR. In the ß-arrestin and internalization assays, only fentanyl acted as a full agonist; N1 and N2 acted as partial agonists of MOR. In the mouse tail-flick test, N1 and N2 showed analgesic effects equivalent to those of fentanyl and morphine. In fentanyl-tolerant mice, fentanyl showed a diminished analgesic effect, whereas N1 and N2 as well as morphine retained their analgesic effects. CONCLUSIONS: While N1 and N2 have higher transdermal absorbability than fentanyl, they also have analgesic effects comparable to those of morphine, suggesting that they may be attractive compounds for the development of novel opioid patches for transitioning from fentanyl patches.


Assuntos
Fentanila , Morfina , Analgésicos Opioides , Animais , Proteínas de Ligação ao GTP/metabolismo , Humanos , Camundongos , Receptores Opioides/metabolismo , Receptores Opioides mu/agonistas , beta-Arrestinas/metabolismo
10.
Biomolecules ; 12(3)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35327617

RESUMO

The issue of tolerance to continuous or repeated administration of opioids should be addressed. The ability of ketamine to improve opioid tolerance has been reported in clinical studies, and its mechanism of tolerance may involve improved desensitization of µ-opioid receptors (MORs). We measured changes in MOR activity and intracellular signaling induced by repeated fentanyl and morphine administration and investigated the effects of ketamine on these changes with human embryonic kidney 293 cells expressing MOR using the CellKey™, cADDis cyclic adenosine monophosphate, and PathHunter® ß-arrestin recruitment assays. Repeated administration of fentanyl or morphine suppressed the second MOR responses. Administration of ketamine before a second application of opioids within clinical concentrations improved acute desensitization and enhanced ß-arrestin recruitment elicited by fentanyl but not by morphine. The effects of ketamine on fentanyl were suppressed by co-treatment with an inhibitor of G-protein-coupled receptor kinase (GRK). Ketamine may potentially reduce fentanyl tolerance but not that of morphine through modulation of GRK-mediated pathways, possibly changing the conformational changes of ß-arrestin to MOR.


Assuntos
Ketamina , Morfina , Analgésicos Opioides/farmacologia , Tolerância a Medicamentos , Fentanila/farmacologia , Humanos , Ketamina/farmacologia , Morfina/farmacologia , Receptores Opioides/metabolismo , beta-Arrestinas/metabolismo
11.
PLoS One ; 17(2): e0262892, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35157707

RESUMO

Mesenchymal stem cells (MSCs), which are isolated from adipose tissue (AD-MSCs), umbilical cord (UC-MSCs), or bone marrow, have therapeutic potential including anti-inflammatory and immunomodulatory activities. It was recently reported that MSCs are also effective as a therapeutic treatment for neuropathic pain, although the underlying mechanisms have yet to be resolved. Therefore, in this study, we investigated the effects of human AD- and UC-MSCs on neuropathic pain and its mechanisms using rat models of partial sciatic nerve ligation (PSNL). AD- or UC-MSCs were intravenously administered 4 days after PSNL. Antinociceptive effects were then evaluated using the von Frey and weight-bearing tests. We found that, 3-9 days after the administration of AD- or UC-MSCs to PSNL-exposed rats, both the mechanical threshold and differences in weight-bearing of the right and left hind paws were significantly improved. To reveal the potential underlying antinociceptive mechanisms of MSCs, the levels of activation transcription factor 3- and ionized calcium-binding adapter molecule 1-positive cells were measured by immunohistochemical analysis. AD- and UC-MSCs significantly decreased the levels of these proteins that were induced by PSNL in the dorsal root ganglia. Additionally, UC-MSC significantly improved the PSNL-induced decrease in the myelin basic protein level in the sciatic nerve, indicating that UC-MSC reversed demyelination of the sciatic nerve produced by PSNL. These data suggest that AD- and UC-MSCs may help in the recovery of neuropathic pain via the different regulation; AD-MSCs exhibited their effects via suppressed neuronal damage and anti-inflammatory actions, while UC-MSCs exhibited their effects via suppressed neuronal damage, anti-inflammatory actions and remyelination.


Assuntos
Transplante de Células-Tronco Mesenquimais , Neuralgia/terapia , Neurônios/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Tecido Adiposo/citologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Gânglios Espinais/imunologia , Gânglios Espinais/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Nervo Isquiático/cirurgia , Cordão Umbilical/citologia
12.
BMC Cancer ; 22(1): 90, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062896

RESUMO

BACKGROUND: Oral mucositis (OM) associated with cancer treatment not only impairs patients' quality of life but also causes treatment delays or changes. This prospective exploratory study was conducted to evaluate the efficacy of Episil® oral liquid, which is an approved protective formulation for the oral mucosa in patients with OM. The extent of the pain-relieving effect, feeling during use, and adverse events or problems were evaluated. METHODS: In total, 10 Japanese cancer patients with OM receiving chemotherapy, pretreatment therapy for hematopoietic stem cell transplantation, or radiation therapy for head and neck cancer were enrolled. RESULTS: A numerical rating scale (NRS) was used to assess oral pain intensity due to OM. Compared to baseline, the mean NRS began to decrease at 5 min after using Episil® (7.1 ± 1.4 to 4.6 ± 2.87; p = 0.264). A significant decrease was observed in the pain score after using Episil® compared with that before using Episil®, and this effect lasted up to 120 min. The protective effects of Episil® were observed 3-5 min after application. Some patients felt slight soreness or discomfort when applying Episil®. However, this discomfort due to Episil®'s stimulation was within the allowable range and transient. No adverse events were observed in any of the cases. CONCLUSIONS: The results of this prospective study showed that Episil® could be an effective treatment to relieve oral pain in Japanese patients with moderate to severe OM, and this newly approved product might adequately support patients' oral intake. TRIAL REGISTRATION: University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR) ( UMIN000031921 ).


Assuntos
Antineoplásicos/efeitos adversos , Dor/tratamento farmacológico , Lesões por Radiação/tratamento farmacológico , Elastômeros de Silicone/administração & dosagem , Estomatite/tratamento farmacológico , Adulto , Idoso , Estudos de Viabilidade , Feminino , Neoplasias de Cabeça e Pescoço/terapia , Transplante de Células-Tronco Hematopoéticas , Humanos , Masculino , Pessoa de Meia-Idade , Mucosa Bucal/efeitos dos fármacos , Dor/etiologia , Medição da Dor , Estudos Prospectivos , Qualidade de Vida , Lesões por Radiação/etiologia , Estomatite/etiologia , Resultado do Tratamento
13.
Molecules ; 26(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34641621

RESUMO

Activated opioid receptors transmit internal signals through two major pathways: the G-protein-mediated pathway, which exerts analgesia, and the ß-arrestin-mediated pathway, which leads to unfavorable side effects. Hence, G-protein-biased opioid agonists are preferable as opioid analgesics. Rubiscolins, the spinach-derived naturally occurring opioid peptides, are selective δ opioid receptor agonists, and their p.o. administration exhibits antinociceptive effects. Although the potency and effect of rubiscolins as G-protein-biased molecules are partially confirmed, their in vitro profiles remain unclear. We, therefore, evaluated the properties of rubiscolins, in detail, through several analyses, including the CellKeyTM assay, cADDis® cAMP assay, and PathHunter® ß-arrestin recruitment assay, using cells stably expressing µ, δ, κ, or µ/δ heteromer opioid receptors. In the CellKeyTM assay, rubiscolins showed selective agonistic effects for δ opioid receptor and little agonistic or antagonistic effects for µ and κ opioid receptors. Furthermore, rubiscolins were found to be G-protein-biased δ opioid receptor agonists based on the results obtained in cADDis® cAMP and PathHunter® ß-arrestin recruitment assays. Finally, we found, for the first time, that they are also partially agonistic for the µ/δ dimers. In conclusion, rubiscolins could serve as attractive seeds, as δ opioid receptor-specific agonists, for the development of novel opioid analgesics with reduced side effects.


Assuntos
Peptídeos Opioides/farmacologia , Receptores Opioides delta/agonistas , Transdução de Sinais/efeitos dos fármacos , Spinacia oleracea/química , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Estrutura Molecular , Peptídeos Opioides/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Receptores Opioides mu/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/farmacologia , beta-Arrestinas/metabolismo
14.
Cells ; 10(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34685631

RESUMO

Oxytocin (OT) influences various physiological functions such as uterine contractions, maternal/social behavior, and analgesia. Opioid signaling pathways are involved in one of the analgesic mechanisms of OT. We previously showed that OT acts as a positive allosteric modulator (PAM) and enhances µ-opioid receptor (MOR) activity. In this study, which focused on other opioid receptor (OR) subtypes, we investigated whether OT influences opioid signaling pathways as a PAM for δ-OR (DOR) or κ-OR (KOR) using human embryonic kidney-293 cells expressing human DOR or KOR, respectively. The CellKeyTM results showed that OT enhanced impedance induced by endogenous/exogenous KOR agonists on KOR-expressing cells. OT did not affect DOR activity induced by endogenous/exogenous DOR agonists. OT potentiated the KOR agonist-induced Gi/o protein-mediated decrease in intracellular cAMP, but did not affect the increase in KOR internalization caused by the KOR agonists dynorphin A and (-)-U-50488 hydrochloride (U50488). OT did not bind to KOR orthosteric binding sites and did not affect the binding affinities of dynorphin A and U50488 for KOR. These results suggest that OT is a PAM of KOR and MOR and enhances G protein signaling without affecting ß-arrestin signaling. Thus, OT has potential as a specific signaling-biased PAM of KOR.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Ocitocina/farmacologia , Receptores Opioides delta/metabolismo , Receptores Opioides kappa/metabolismo , Transdução de Sinais , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Sítios de Ligação , Células CHO , Cricetulus , AMP Cíclico/metabolismo , Diprenorfina/farmacologia , Dinorfinas/farmacologia , Impedância Elétrica , Endocitose/efeitos dos fármacos , Células HEK293 , Humanos , Concentração Inibidora 50 , Receptores Opioides delta/agonistas , Receptores Opioides kappa/agonistas , Transdução de Sinais/efeitos dos fármacos
15.
ChemMedChem ; 16(22): 3463-3476, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34278724

RESUMO

Ghrelin is a pleiotropic feeding hormone which also has a pivotal role in the central nervous system. Upon the activation of its receptor, growth hormone secretagogue receptor (GHSR), the Gαq/11 -mediated and the ß-arrestin-mediated signaling pathways are activated. As the ß-arrestin pathway is a potential drug target, there is a strong need for ß-arrestin-biased GHSR modulators. Activation of the ß-arrestin pathway should inhibit the Gαq/11 -mediated calcium flux through internalization of the receptor. Hence, we used the antagonistic activity in the calcium assay as the first screening for the ß-arrestin activation. By conducting the second screening assay for the ß-arrestin activation based on extracellular signal regulated kinase (ERK) 1/2 phosphorylation, we discovered a putative ß-arrestin-biased superagonist. The activity of the compound was not completely blocked with the competitive antagonist, which implies that the effect is mediated, at least partly, by allosteric binding of the compound.


Assuntos
Azidas/farmacologia , Receptores de Grelina/química , beta-Arrestinas/agonistas , Azidas/síntese química , Azidas/química , Humanos , Estrutura Molecular , beta-Arrestinas/metabolismo
16.
J Clin Med ; 10(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203786

RESUMO

Oral mucositis (OM) is one of the most frequently observed adverse oral events in radiation therapy for patients with head and neck cancer. Thus, objective evaluation of OM severity is needed for early and timely intervention. Here, we analyzed the time-course of salivary metabolomic profiles during the radiation therapy. The severity of OM (National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events v3.0) of nine patients with head and neck cancer was evaluated. Partial least squares regression-discriminant analysis, using samples collected before radiation therapy, showed that histidine and tyrosine highly discriminated high-grade OM from low-grade OM before the start of radiation therapy (significant difference, p = 0.048 for both metabolites). Further, the pretreatment concentrations of gamma-aminobutyric acid and 2-aminobutyric acids were higher in the high-grade OM group. Although further validations are still necessary, this study showed potentially associated metabolites with worse radiotherapy-related OM among patients with head and neck cancer.

17.
Biomed Pharmacother ; 141: 111800, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34175819

RESUMO

BACKGROUND: The misuse of opioids has led to an epidemic in recent times. The endothelin A receptor (ETAR) has recently attracted attention as a novel therapeutic target to enhance opioid analgesia. We hypothesized that endothelin A receptors may affect pain mechanisms by heterodimerization with µ opioid receptors. We examined the mechanisms of ETAR-mediated pain and the potential therapeutic effects of an ETAR antagonist, Compound-E, as an agent for analgesia. METHODS: Real-time in vitro effect of Compound-E on morphine response was assessed in HEK293 cells expressing both endothelin A and µ opioid receptors through CellKey™ and cADDis cAMP assays. Endothelin A/µ opioid receptor dimerization was assessed by immunoprecipitation and live cell imaging. The in vivo effect of Compound-E was evaluated using a morphine analgesia mouse model that observed escape response behavior, body temperature, and locomotor activity. RESULTS: In CellKey™ and cAMP assays, pretreatment of cells with endothelin-1 attenuated morphine-induced responses. These responses were improved by Compound-E, but not by BQ-123 nor by bosentan, an ETAR and endothelin B receptor antagonist. Dimerization of ETARs and µ opioid receptors was confirmed by Western blot and total internal reflection fluorescence microscopy in live cells. In vivo, Compound-E potentiated and prolonged the analgesic effects of morphine, enhanced hypothermia, and increased locomotor activity compared to morphine alone. CONCLUSION: The results suggest that attenuation by endothelin-1 of morphine analgesia may be caused by dimerization of Endothelin A/µ opioid receptors. The novel ETAR antagonist Compound-E could be an effective adjunct to reduce opioid use.


Assuntos
Analgésicos Opioides/administração & dosagem , Antagonistas do Receptor de Endotelina A/administração & dosagem , Morfina/administração & dosagem , Multimerização Proteica/fisiologia , Receptor de Endotelina A/metabolismo , Receptores Opioides mu/metabolismo , Animais , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Peptídeos Cíclicos/administração & dosagem , Multimerização Proteica/efeitos dos fármacos
18.
Front Pharmacol ; 12: 695039, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35145397

RESUMO

Several clinical studies have reported that Japanese herbal medicine Hangeshashinto (HST) has beneficial effects on chemotherapy-induced oral ulcerative mucositis (OUM). Our previous research demonstrated that HST improves chemotherapy-induced OUM through human oral keratinocyte (HOK) migration, which was suppressed by mitogen-activated protein kinase (MAPK) and C-X-C chemokine receptor 4 (CXCR4) inhibitors. However, the association between these molecules and HOK migration was unclear. Here, we examined the effects of HST on the expression of CXCR4/CXCR7 and C-X-C motif chemokine ligands 11 and 12 (CXCL11/CXCL12) in HOKs. Our results indicated that HST upregulated CXCL12, but not CXCR4, CXCR7, nor CXCL11 in HOKs. HST-induced expression of CXCL12 was significantly suppressed by an inhibitor of extracellular signal-regulated kinase (ERK), but not of p38 and c-Jun N-terminal kinase (JNK). In addition, HST induced phosphorylation of ERK in HOKs. These findings suggest that HST enhances HOK migration by upregulating CXCL12 via ERK.

19.
Biochem Biophys Res Commun ; 534: 988-994, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139013

RESUMO

TRV130 (oliceridine), a G protein-biased ligand for µ-opioid receptor, has recently been synthesized. It is considered to have strong antinociceptive effects and only minor adverse effects. However, whether or not oliceridine actually exhibits an ideal pharmacological profile as an analgesic has not yet been fully clarified in animal studies. This study examined the pharmacological profile of oliceridine in cells and animals. Oliceridine (10 µM) did not produce any µ-opioid receptor internalization in cells even though it increased impedance, which reflects the activation of Gi protein using the CellKey™ system, and inhibited the formation of cAMP. In mice, oliceridine (0.3-10 mg/kg) produced a dose-dependent antinociceptive effect with a rapid-onset and short-duration action in the hot-plate test, as well as antihyperalgesia after sciatic nerve ligation without the development of antinociceptive tolerance using the thermal hyperalgesia test. On the other hand, oliceridine inhibited gastrointestinal transit. Furthermore, oliceridine produced rapid-onset hyperlocomotion at antinociceptive doses; sensitization developed in mice and an emetic effect was observed in ferrets. These results indicate that, although oliceridine may produce dopamine-related behaviors even through selective stimulation of the G-protein-biased µ-opioid receptor pathway, it still offers advantages for breakthrough pain without antinociceptive tolerance with adequate doses.


Assuntos
Analgésicos/uso terapêutico , Proteínas de Ligação ao GTP/metabolismo , Neuralgia/tratamento farmacológico , Receptores Opioides mu/metabolismo , Compostos de Espiro/uso terapêutico , Tiofenos/uso terapêutico , Analgésicos/farmacologia , Animais , Linhagem Celular , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neuralgia/metabolismo , Receptores Opioides mu/agonistas , Transdução de Sinais/efeitos dos fármacos , Compostos de Espiro/farmacologia , Tiofenos/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...